高等数学每周知识竞赛第1期
高等数学每周知识竞赛,每周一中午12开放题目,周五晚上12:00截止答题,请将手写版的答案提交至慧园3栋501陶金老师办公室,答案上面写上提交的日期和时间,我们根据答卷的得分和提交时间,每周评选出一位获胜者,奖励100块钱购书券。
只限本人独立完成,不得商量,讨论或到网上去查答案。
Given sequence \(x_0,x_1,x_2,\cdots\) which satisfies \(x_0=0,x_1=1\) and
\[x_n=x_{n-1}+\frac12 x_{n-2},\quad n=2,3,4,\cdots\]Find the maximal positive integer \(l\) such the \(x_l\) is integer.
from fractions import Fraction
def contest(num:int=0):
if num<2:
return Fraction(num, 1)
x0 = Fraction(0, 1)
x1 = Fraction(1, 1)
for i in range(num):
tmp = x1
x1 += x0/2
x0 = tmp
return x1
num = 0
try:
while True:
ans = contest(num)
if ans._denominator==1:
print(num)
num += 1
except:
print(num)